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An Eulerian Code for the Study of the Drift-Kinetic Vlasov Equation
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An Eulerian code is developed to study the drift-kinetic Vlasov
equation in a strong magnetic field. This is of interest in relation to
studies on the E x B instabilities, as, for instance, the hydrodynhamical
Kelvin—Helmholtz {KH) instabilities and the ion temperature gradient
instability. We investigate the nonlinear behavior of nonneutral plasma
involving the formation and growth of vortices as a result of a velocity
shear introduced by a nonuniform E x B drift. In particular the linear
growth rates of KH instabilities have been calculated numerically and
are shown to be in very good agreement with analytical theory,
Preliminary results obtained for the ion temperature gradient instability
are also presented. © 1983 Academic Press, Inc.

1. INTRODUCTION

Strong magnetic fields are commonly used in laboratory
plasma experiments, especially for the important problem of
plasma confinement in large devices. In many of these
devices an electric field E exists which results in an ExB
flow. Any inhomogeneity in these electric fields results in a
shear in the plasma flow and can lead to the appearance of
low-frequency instabilities. The physics of a plasma stream-
ing across a static strong magnetic field has been the subject
of intense theoretical, experimental, and computer simula-
tion research. The basic equation to describe such a system
is the drift-kinetic or guiding center Vlasov equation which
couples the E x B motion across a magnetic field to the
motion parallel to the magnetic field. This system possesses
some interesting features, which makes it of interest as a
dynamical system in its own right, in addition to its
relevance for real plasmas in a strong magnetic field, as, for
instance, the problem of instabilities associated with the
E x B drift at the edge of a tokamak {1] and to the mathe-
matically similar problem of the two-dimensional tur-

bulence in an ideal fluid [2]. The nonlinear evolution of the
instabilities can lead to the formation of vortices or convec-
tive cells (see [2-5]) which may have important consequen-
ces on the problem of plasma confinement and in particular
in the problem of anomalous diffusion across a magnetic
field. The recent interest in the problem of the physics of the
edge of a tokamak is an important example [6-7].
Analytical and numerical results have been previously
obtained for the study of the stability of the solutions of the
linearized 2D vorticity equations and also for 3D fluid
guiding-center plasmas [8-10]. In particular the growth
rates of KH instabilities have been calculated analytically
and numerically in [10, 117] for the case of a flow having a
point of inflexion. Similar analysis has been developed in
[12-14] to study the linear stability in inhomogeneous 3D
guiding-center plasma with a water-bag model, where the
drift-kinetic Vlasov description of a 3D guiding-center
plasma has been investigated. It was shown that this model
includes resonant three waves interaction between plasma
waves at different angles to a strong external magnetic field,
the interaction being of decay instability type [§, 13, 14].
Finally, we note the recent interest in ion-temperature-
gradient instabilities, also known as %, modes, in connection
with E x B rotation and anomalous transport at the edge of
tokamaks. In this case the adiabatic response of electrons to
the perturbing potential precludes the existence of KH
(driven by velocity shear) and Rayleigh-Taylor {driven,
¢.g., by a centrifugal acceleration) instabilitics. For a
comprehensive review and study of the simulation of the
ion-temperature-gradient instabilities, see the recent work
in Ref [15]. An important problem in the study of these
instabilities is the small growth rate of these low frequency
instabilities and the relatively low saturation level of their
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potential, which makes their simulation using particle codes
difficult. An obvious way to improve the understanding of
these instabilities is to use an eulerian Vlasov model, where
{unlike particles in cell codes) we have a good description of
voriex structures and phase space resolution and very low
numerical noise. Indeed clear pictures and results have been
obtained by Vlasov codes in the precise mechanism of
the electrostatic nonlinear evolution of phase space holes
associated with strong nonlinear plasma oscillations
{Bernstein—Greene—Kruskal equilibria, [16, 17]). Recently
the eulerian Viasov code has.been applied to the study of the
mechanism of accelerated particles to high energies with a
very good resolution in the low density region to study the
phase space dynamics of electrons accelerated by Raman
scattering [ 18, 19]. These models remain one-dimensional
in space. The purpose of the present work is to present a 2D
drift-kinetic Viasov code in order to describe the nonlinear
behavior of plasma instabilities in an E x B flow and the
resulting 2D vortex structure formation. In Section 2 we
give the basic equations of the drift kinetic Vlasov model
and then present the numerical algorithm. We compute in
Section 3, in the case of a 2D guiding center approximation
(for a perpendicular magnetic field) the growth rates of the
KH instability and compare the results with the analytical
values obtained in Ref. [11] using the Rayleigh stability
equation. Nonlingar behavior and vortex formation in the
x— y plane and their mutual interaction {coalescence of
vortices) are also investigated numerically. The simulation
results for a tilted magnetic filed in the x — z plane, using the
drift-kinetic model are presented in Section 4. Finally in
Section 5, we present preliminary resuits for a simulation to
study the growth and saturation of an ion temperature
gradient instability, and Section 6 will present our
conclusion.

2. THE DRIFT-KINETIC VLASOY MODEL

2.1. The Basic Equations and the Numerical Code

In this section we present the basic equations that
primarily govern the plasma dynamics in the case of a
uniform magnetic field B=(B,, 0, B,) in the x — z plane.
We assume that the electrostatic shear instability takes
place in a frequency regime lower than the ion cyclotron fre-
quency and we use the guiding-center drift approximation.
The electron and ion velocity can be written in the following
form: o

ExB

with rE
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The drift-kinetic Vlasov equation is written
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The electron and ion distribution functions are reduced to
a 3D phase space function f.(x, y,v,,) and f,(x, y,v,),
where v, is the velocity variable along the magnetic field.
The geometry of the system is given in Fig. 1, in which we
have plotted the plasma box in the x — y plane. We assume
periodic boundary condition in the x-direction and zero
boundary conditions in y-direction for electron and ion
density and for the potential. That is, the p-direction is
identified with the direction having nen-periodic spatial
variations. Thus we perform the numerical experiment in
a rectangular domain with 0<x <L, and —L <y<L,
{only the y > 0 part has been represented in Fig. 1).

Denoting by —e and m, (e and m,} the electron (resp.
ion) charge and mass we have

af, E, . of.,
Y (u”e cos +F’ sin 9) F™
E. sinfdf, eE, of.
—— == —cos 0 —=0. 1
B 3y m, cos do). th
A similar equation can be obtained for the ions,
of; E, sin 1\ df;
E+(U||,-COSQ+ B )5;
E sinf@df, eE of;
_ox2 VY E; . 2
3 6y+ m COSB&UH,- 0 {2)
The electric fields are then given by
E. = —0¢/dx (3)
and
E,= —0¢/0y, (4)
where the electric potential ¢ obeys Poissons’s equation,
(5)

FIG. 1. A sketch of the two-dimensional simuiation box x is the
periodic dimension.
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where n, and n; denote respectively the electron and ion
densities given by

ne(xs ¥, t) = jfe(x! Vs v||e) dutle (6)

milx 3 )= [ Sl p, vy doy (M

The numerical integration of Eq. (1} is performed by
using a splitting scheme in which we separate the integra-
tion in both directions successively according to the
sequence of operators (X/2)(¥/2) ¥, (¥/2)(X/2) where the
operators X, Y,and I?” denote the shift in x, y, and v, direc-
tions for both particie species, and over a full time step A1
(The term 4 denotes that the shift is effected over a half time
step). Thus the fractional step method of Eq. (1), in the case
of electrons for instance, involves five integration steps:

(A1) Between 1, and ¢,,,, we shift the electron
distribution function in x-space for a time 4¢2 and we
obtain

FHX, ¥, Vs tasp2)

E*n+Wgsin 8\ 4t
=f(, [x—(vu(,cos 9+—y_—"‘)_, y, v”e, l":l

B 2
(8)

Note that this shift implies the computation of the y-com-
ponent electric field EX**+ ' at time 7,, , 4,0 = (1 + 3) 41. We
have two possibilities to evaluate this electric field: first the
Poisson’s equation (this necessitates using a predictor-
corrector method because we do not know the distribution
function at time ¢,,,4 and it will be discussed in Sec-
tion 2.3); on the other hand, we can use Maxwell Faraday’s
equation: the star in E¥ formulation refers to this second
choice (see Section 2.2 for the calculation of E}).

(A2) We compute E*"*Y=F (x, ¥,1,,,4) and we
shift the distribution f, now along the x-axis for a time A¢#/2
which yields

f:*(x’ }’1 ULle’ tn+ 1/2)

sin 6 A¢

:f:‘ (X,y+Efn+1f4_B_~5’U"e, tn‘+l,"2)' (9)

(A3) We compute the electric field components at time
f, .1, by solving Poisson’s equation (this time the distribu-
tion function is known at time ¢, ,) and we obtain E}* "2
and E"*!7?; then we shift the distribution function in v,
space for a full time step A4r according to

fi*(x» ys v||e’ In+1,n‘2)

=f¥* (x, ¥, (vueﬂ—i E"*12 cos B) At ¢, . 1/2)-
me
(10)
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(A4) Between ft,,,, and ¢,,, we shift again the
distribution function in y-space for half a time step after
computing the x-component EX"*%% at time 1, 4=
{(n+ 2) 4¢ and we obtain

fi*(x, s U||es I!n-f-l)

sin & At

B Zavﬂes tn+l,'2)-

=/ (x,y+E;“””"‘ (11)

(A5) To end up we shift £, in the x-direction for a time
At/2 after computing the y-component of the electric field
E¥"+3% at time ¢, , 1/, and we have

sin @
fe(x’ Vs U)jes tn+1)=f:* [x_<vllc Cos 6"'E_3m+3,‘f4 B )

X AL Y, V1es (,,H,z]. {12)

This sequence allows us to compute the electron distribu-
tion function f, {(or f; in a similar way) at each grid points
at time ¢, , from the known values of £, (or f;), and this
scheme is correct in the second order in 4r. Thus we have
reduced the integration of the Vlasov equation given by
Eq. (1) to five successive interpolation problems. A very
powerful method using cubic spline interpolation has been
already used in the case of one-dimensional plasma (see
Refs. [18, 193) and it has been applied here.

2.2. The Electric Field Computation

In the previous integration steps from (A1) to (A5}, the
component field E ¥ and E ¥ are related to the integration of
the Maswell-Faraday equation:

JE

g5 = ~d (13)

since the magnetic field is uniform,

Equation (13) has been solved between ¢, and 1,
using a time centered scheme, provided that the electric field
components are known at time f, (which amounts to
integrating Poisson’s cquation at time ¢,). The current
density J used in Eq. (13) can be written in the form

J=JH+J.L!
where

ExB
‘]L:_ET(ne('x’ Y, [)_ni(xs Vs t)) (14)
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the predicted value obtained by the linear analysis of the
Rayleigh stability equation, Furthermore, the code provides
an excellent spatial resolution which allows a detailed
examination of the mutual interaction of vortices’ rotating
arms around the central structure. Then the extension of the
model to an electrostatic drift-linetic plasma including elec-
trons and ions motion in a 3D phase space has been effected
in order to investigate the influence of a uniform tiited
magnetic field on the formation of the vortex structures.
A shift of the unstable wave number to the first harmonic
has been observed which leads, in the case of # =80° to the
appearance of two vortices in both electron and ion den-

T = 9100
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FIG. 18. (a) Ion density distribution in the x — y plane showing the
occurrence of a vortex structure at time 1w, = 9100; (b} the corresponding
kinetic temperature in the x— y plane at time ze,=9100; (¢) The
corresponding current density m,E x B/B* at time fw,, = 9100,
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sities. Then for an angle 8 =75° a complete stabilization of
the KH instability has been observed.

In Section 5, we have presented the results of a simulation
for the ion temperature gradient instability. The very low
noise level of the code allows us to study accurately an
instability with a growth rate Im w/w, ~ 10~% Further
application of this code to ion temperature gradient
instability is underway, especially by including in the equa-
tions the gyro-averaged effect of the ton Larmor radius, as
indicated in [15]. for instance.
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FIG. 19. (a)lon density distribution at saturation at time fe,,; = 9500;
(b) the corresponding kinetic temperature at time tw,;=9500; (c}) the

corresponding current flow »,E x B/B?,
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FIG. 20. Contour plot of the electron density at saturation,
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